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I
ts extremely high carrier mobility, ther-
mal conductivity, and ballisticity of charge
transport make graphene (i.e., a mono-

layer of hexagonal carbon lattice) an excel-
lent candidate for achieving the high speed
and high performance of the next genera-
tion RF electronics at the nanoscale, includ-
ing field-effect transistors (FET), frequency
multipliers, interconnects, sensors, and wire-
less devices.
Our analysis is focused on graphene na-

noribbon (GNR), that is, a narrow strip of gra-
phene.1�7 The analysis of quantum trans-
port in GNR is carried out by a variety of
models, such as tight binding (TB), effective
mass, and k 3 p approximations; the latter
yields a Dirac-like systemof equations,8which
is effectively applied to large GNRs. Two
main methods stem from the TB approach:
the first one makes use of Green's function
of a GNR region;9�11 the second one repre-
sents an alternative formulation to the tech-
nique of ref 12, where amonatomic lattice is
subdivided into layers perpendicular to the
transport direction, and use is made of a
multimode scattering matrix model. These
techniques provide insight on the effects on
quantum transport of applied external elec-
tric and magnetic fields,13 bendings,14 dis-
continuities,10 and edge terminations.15 The
underlying assumptions are the ballisticity
of transport and the weakness of the inter-
action between charges, due to the rela-
tively long distances involved.
The study of GNRs typically involves two

physical ports (input and output), whereas
in our previous approach,16 multiport GNR
circuits can be considered. Each port, seen
as the termination of a semi-infinite GNR
waveguide, is described bymeans of a basis
of electronic eigenfunctions. In this contri-
bution, important steps forward have been
made with respect to ref 16, where calcula-
tion is not self-consistent: in particular, we
introduce a full self-consistent analysis of

the transport equation and of the electro-
static potential generated by the GNR charge
density. As it will be shown, this is obtained
by numerical iteration. The net charge den-
sity in the GNR is obtained by considering
the contribution of all occupied states, that
is, from the bottom energies up to the Fermi
level that can also comprise, differently from
ref 16, bound electronic states. This is a non-
trivial development because, usually, the
transport analysis is restricted to one or a
few wave functions and to low carrier en-
ergies; for example, the current through a
monodimensional channel for small bias
voltages is usually limited by the number
of free states around the Fermi energy. Simi-
larly, the computational load, in the analysis
of n-doped (p-doped) GNRs, is often re-
duced by considering contributions to the
current just from the conduction band elec-
trons (or valence band holes). However,
the above simplification may be unsuita-
ble, as highlighted in a later example, in
the cases of strong localized perturbations
of the GNR potential, with respect to the
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ABSTRACT In this contribution, we analyze the multichannel coherent transport in graphene

nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR

devices of a very general form, involving multiple bands and multiple leads. The 2D quantum

transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear

as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of

the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling

through the channel at all of the allowed energies. Moreover, formation of bound charges

corresponding to a discrete modal spectrum is observed and included in the model. We provide

simulation examples by considering GNR configurations typical for transistor devices and GNR

protrusions that find an interesting application as cold cathodes for X-ray generation. With reference

to the latter case, a unified model is required in order to couple charge transport and charge

emission. However, to a first approximation, these could be considered as independent problems, as

in the example.

KEYWORDS: graphene nanoribbon . coherent transport . scattering matrix .
X-ray cathode . field-effect transistor
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band gap; the same holds in the case of abrupt GNR
terminations.
The last case is of particular interest for field-emis-

sion applications: we will show that the presence of
bound electrons in correspondence with a GNR termi-
nation leads to strong charge concentrations. The prob-
lem is, to some extent, similar to that of the screening
effect of localized charges in a 2DEG, with some more
difficulties arising from the finite width of the GNR and
from the constraints to the electrostatic potential due
to the metal electrodes.
In Figure 1, the above-mentioned scheme of multi-

port GNR-FET is shown. Recently, a full quantum solver
for carbon nanotube (CNT)-FET, with a user-friendly in-
terface, has been developed:17 a first version will be
available online, and corresponding software is being
developed for simulation of a GNR-FET. New ultrami-
niaturized devices with potential medical applications
may also be considered, for example, GNR-based cold
cathode, to be used in place of the traditional thermio-
nic X-ray sources for standard tomography. In fact,
CNTs are already being employed for this purpose; the
elimination of the resistively heated metal filaments
greatly extends the working life of X-ray tubes; more-
over, the power requirements of the new X-ray nano-
source can be reduced efficiently to allow portable X-ray
machines. It may be natural to wonder whether GNR
planar structures could behave as better field emitters
than CNTs or graphene sharp extrusions.18 The follow-
ing considerations point to this direction, namely, (i)
due to the planar geometry, good metal contacts may
be obtained; (ii) densely packed states are present in
the case of zigzag GNRs; this may possibly lead to
increased field emission; (iii) GNR-FET configurations
could allow control of the charge resonances in the
GNR; (iv) in principle, a proper choice of the GNR pattern
may provide amplification and adjustable orientation
of the emitted charge, owing to the “array factor”.
Many simplifiedmodels, such as the Fowler�Nordheim

relation,19 are currently applied to the problem of field
emission by sharp tips. Differently from these heuristic
models, our approach allows, in principle, the investi-
gation of the coupling between the internal problem
of quantum transport in GNR and the “antenna” pro-
blem of the emission, consistent with the self-gener-
ated potential.

Model. Let us start from the discrete formulation16

of the Schrödinger equation

Hlψl þH0ψþHrψr ¼ Eψ (1)

where E is the energy, ψl, ψ, and ψr are the wave
functions of three consecutive GNR unit cells, and the
Hamiltonian has been decomposed in three matrices
which model transfer energies between adjacent cells:
matrix Hl (Hr) includes the hopping elements from a
unit cell to the previous (following) one, H0 is the self-
energymatrix of the unit cell. The relationsHl =Hr

þ and

H0 =H0
þ hold. The diagonal elements ofH0 contain the

electrostatic potential solution of Poisson's equation.
Solution of eq 1 provides the basis of the eigenmodes
of the GNR. Exploiting periodicity, eq 1 becomes

(Hle
jkL þH0 þHre

�jkL)ψ ¼ Eψ,

ψ ¼ e�jky ∑
i

ψiδ(x � xi, y � yi)
(2)

where i spans the unit cells, k is the wavenumber, and
L is the length of the unit cell. The solutions of eq 2,
corresponding to different branches of the dispersion
curves, can be distinguished as propagatingmodes for
real k and evanescentmodes for complex or imaginary k.
In order to provide the correct mode normalization,
wave functions have to be divided by16

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fT (E)
4πIm(ψþHre�jkLψ)

s
(3)

where fT is the Fermi distribution function at T tem-
perature. The above normalization implies that all
propagating modes carry the same current with refer-
ence to Landauer's formula. It also ensures charge
neutrality as verified in the following. Assuming kL = θ
and taking the partial derivative of eq 2, we have

Dθ(Hle
jθ þH0 þHre

�jθ)ψ ¼ j(Hle
jθ � Hre

�jθ)ψ

� (Hle
jθ þH0 þHre

�jθ)
jy

L
ψ ¼ DθEψ � E

jy

L
ψ

the above expression is simplified by using eq 2 and
then premultiplied by ψþ, yielding

jψþo(Hle
jkL � Hre

�jkL)ψ ¼ 2Im ψþo(Hre
�jkL)ψ

¼ DθEψþoψ

where the scalar product gives a number, that is, the
total charge and not a charge density spatial vector, as
it implies spatial summation. The last result is used to
evaluate the energy integral of the charge associated
with any wave function (corresponding to one of the N
branches of the dispersion curves of aN atomunit cell16),
expressing charge neutrality

2
Z

ψþoψ
4πIm[ψþ(Hre�jkL)ψ]

dE

¼ 2
Z 2π

0

ψþoψ
4πIm[ψþ(Hre�jkL)ψ]

2Im[ψþo(Hre�jkL)ψ]
ψþoψ

dθ

¼ 2 (4)

Figure 1. Many-lead GNR-FET: a T-shaped GNR is shown.
V1,2,3 are metal electrodes.
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where the normalization (eq 3) with T ∼ 0 has been
used, and the factor 2 accounts for spin degeneracy. If
the integration (eq 4) is restricted to the range from the
bottom energy up to theDirac point, placed in themid-
dle of the interval of allowed energies, and assumed as
zero reference, then the result is 1, that is, one electron
per atom.

The scattering matrix of a GNR device, defined as in
ref 16, relates incident and reflected mode amplitudes
at port sections, which are different terminations of a
many-lead GNR circuit. For instance, for a two-port
device, we have

where the arrows indicate the propagation direction of
carriers.

One of the difficulties of the proposed method re-
sides in that the scattering formulation has to be adapted
to a periodic waveguide, where the right basis to be
used for describing charge transport is given by the
complete set of Floquet, or periodic, modes. Within the
latter choice, the scattering parameters can be shown
to obey, for example, the expected reciprocity and
losslessness constraints, respectively

S ¼ ST and SþS ¼ I

The number of modes at any port depends on the port
size, on the Fermi level, and on GNR chirality. Regres-
sive modes, either above or below cutoff, are scattered
out of the GNR without reflection: this means perfectly
transparent ports.

A coherent application of the proposed scattering
model to GNR transitions and discontinuities implies
computing the incidence, reflection, and mutual cou-
pling of any wave function, with a proper weight given
by Fermi probability. Propagation of charges is based
on their position on the dispersion curves: positive
(negative) group velocity dE/dk means progressive
waves, moving from left to right (from right to left).
The sign of the group velocity for any wave function
corresponds to the sign of its associated current.

In case of a two-port GNR, the charge density is
obtained by summing the normalized wave functions
of carriers injected from the two opposite ports:

Qc ¼ � e∑
i

Z
f1(E)

jψi
1(x, y, E)j2
A2

þ f2(E)
jψi

2(x, y, E)j2
A2

)dE

(5)

where the subscript “c” refers to the continuous inte-
gral operation, the upper index “i” of ψ1,2

i indicates the
ith band, whereas the lower ones indicate the ports; f1
and f2 are the Fermi probabilities for the electrons at
ports 1 and 2, respectively, and e = 1.6 � 10�19C.

For a multiport device, all physical quantities are
obtained by including the charge contributions from
all ports. For instance, the total current flowing through

the pth port includes contribution of all modes trans-
mitted from the port p to all the other ports:

Ip ¼ 2e
h ∑

i, j, q

Z
(fp(E) � fq(E))S

i, j
pq(E)dE (6)

where Spq
i,j is the scattering coefficient from mode i to

mode j, and from port p to port q.

Validation Test Cases. In this subsection, we discuss
some preliminary results. They are needed, on the one
hand, to show in concrete the typical issues we are deal-
ingwith and, on the other, to test accuracy andnumerical
consistence/robustness of the applied method.

First of all, the integral (eq 5) has been performed all
over the energy states below the Dirac point (E = 0) of a
semiconducting 32 atom GNR standing on air. In each
atomic position, the resulting total charge has to be
equal to 1 in order to compensate for the positive unit
charges of the atomic sites: this is achieved, provided
that the integration step is sufficiently small.

When an external potential is applied, in the form of
a positive spatial pulse along the GNR axis, of ampli-
tudemuch smaller than the band gap, charge neutrality
is still recovered, as long as the contribution of bound
states is included. In this case, in fact, the continuous
integral (eq 5) has to be completed by a discrete spec-
trum representing confinedmodes. The superimposed
potential well yields bound electronic states that ex-
actly compensate the reduced charge penetration in
the well region, in such a way that charge neutrality is
guaranteed everywhere. The discrete contribution Qd

to the total charge density is given by

Qd ¼ � e∑
i

jψ(x, y, Ei)j2 (7)

where each wave function is now just normalized to 2
after integration over the whole GNR volume; neutral-
ity in fact means zero value of the net charge Q, given
by

Q ¼ (Qc þQd)þ e∑
j

δ(x � xj, y � yj) ¼ 0 (8)

Let us consider, as amore interesting example, the case
of a potential well deeper than the band gap: in particular,
a finite potential pulse of 0.125 V is applied to a 16 atom
armchair GNR, having a vanishing band gap. In this
case, charges tend to “fill” the potential well and the
neutrality is locally lost. This is usually described by
assuming a uniform Fermi level, as depicted in Figure
2a. Even without considering charge interaction;we
will consider it later;the above simplification does not
account correctly for local scattering effects. The con-
tributions of the confined modes of Qc and of Qd are
shown, respectively, in Figure 2b�d. The two surface
plots of Figure 2e compare the net charge obtained
respectively by the scattering method, that is, Q from
eq 8, and by a direct evaluation exploiting Fermi level
alignment: scattering enhances the effect of thepotential
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pulsewhere it changes rapidly, namely,the appearance
of charge ripples. Note that each point of the curves of
Figure 2b�e comprises the charges of four close atom-
ic sites.

As it has been observed,20 confinement of charge
propagating in graphene is not feasible by an applied
electric potential, as, for instance, a potential barrier
could be penetrated by electron/holes owing to net
interaction with the occupied states below the barrier.
This can be seen as an equivalent formulation of the

Klein paradox; by the same argument, one can explain
the failureof anexternal electricfield in confiningcharges
in GNR. This situation is shown in Figure 3, where we
consider zigzag GNRs with an externally applied vol-
tage V0, uniform along the GNR axis but varying in the
transverse direction. In the upper part of the figure,
we compare the wave functions of a 32 atom GNR
(∼3.4 nmwide), where V0 is constant and E� V0 = 1.5 eV,
with those of a 64 atom GNR, where E � V0 = 1.5 eV in
the central 32 atoms and E� V0 = 0 eV in the remaining

Figure 2. (a) Dispersion curves (left) of simulated GNR and potential well (right); (b) three of the eight confinedmodes; (c)Qd,
sum of all bound modes; (d) continuous integral Qc; (e) GNR net charge; the red arrow points to a uniformly charged GNR,
reported for comparison.
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16 atoms at both sides, as shown in Figure 3c. Figure 3a
shows that the first mode of the 64 atom GNR is laterally
confined by this transverse stepwise potential, and its
spatial distribution is similar to the first mode of the 32
atom GNR. This does not hold for all of the other modes;
for instance, the external potential cannot play the role
of a laterally guiding barrier for the mode shown in
Figure 3b.

On the basis of the above observations, all modes
have to be considered at any port because we do not
know in advancewhich of themwill contribute to charge
transport.

EXAMPLES AND RESULTS

Some examples of self-consistent analysis of GNR
under the influence of an external potential are shown
in the following. The first one is constituted by a GNR-
FET that is treated as a two-port circuit. The second one
consists of a GNR protrusion that sticks out of a metal
electrode over a dielectric substrate, modeled as a one-
port circuit. In a third example, we report results on
physical observables such as the electric current flow-
ing through a GNR.
In the present work, the GNR is possibly deviated

from its unperturbed state by the two following rea-
sons: (i) the presence of an external applied potential;
(ii) the fact that the GNR on the metal may have occupa-
tion function asymmetric with respect to the Dirac point:
work functions of metal and GNR may be different,
leading to a sort of GNRdoping.16With reference to the
second type of perturbation, the Fermi level of the
contacted GNR has been chosen slightly away from the
symmetry point of the dispersion curves, leading to a
nonzero charge density. The latter is a free parameter
resulting, in practice, from the contact with metal,
doping, or impurities: self-consistency of the analysis

still holds because the charge density of the GNR
over the metal could be, in principle, measured or
estimated.

GNR-FET. Figure 4 shows a two-port GNR (standing
on air) made of n 3m = 16 � 184 atoms. The letters n
andm indicate the number of atoms of the protruding
GNR edge in x- and y-directions, respectively. Two finite
pieces of GNR, extended beyond the ports in order to
improve transparency, are included in the model. In
order to expedite the numerical calculation, we assume
infinitely thick electrodes, namely, the walls of a uni-
form rectangular waveguide (of course the walls are
electrically isolated each other): two opposite walls act
as source and drain, with potential constrained to vol-
tages Vs and Vd, the other two walls act as side gates,
with voltage Vg. This is shown in Figure 4a. The elec-
trostatic potential is calculated by mode-matching at
the planar interface containing the GNR; the matched
modes are given by the attenuating electrostatic
modes of the two semi-infinite rectangular wave-
guides, upper and lower half spaces, separated by
the GNR plane. The charge density on the GNR af-
fects mode-matching by compensating for the dis-
continuity of the potential derivative in the direction
orthogonal to the GNR (z axis).

In the present example, the carrier density in the
contacted GNR is assumed to be∼6.8� 1012 cm�2 and
external voltages are set to zero. It is remarked that the
carrier density constitutes one of the main parameters
affecting the calculation; in general, the higher the den-
sity, the higher the potential change and the slower the
numerical convergence.

Potential and charge, at the last iterative step, are
shown in panels b and c of Figure 4, respectively. The
bottom part of the figure, Figure 4d, shows some itera-
tions of the potential calculation; the solution converges

Figure 3. (a) Firstmode (dashed) of a 32 atomGNRwith E�V0 = 1.5 eV andfirstmode (solid) of a 64 atomGNRwith E�V0 as in
(c); (b) thirdmode (dashed) of a 32 atomGNRwith E� V0 = 1.5 eV and thirdmode (solid) of a 64 atomGNRwith E� V0 as in (c);
(c) transverse potential energy seen by the carriers; arrows indicate transport direction.
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rapidly to the final curve, pointed by the arrow labeled
with “last step”. As a matter of fact, one of the features
of our approach is given by its flexibility in simulating
complex GNR devices, with a reasonably short simula-
tion time. This is a crucial point as, in general, numerical
convergence could requiremany iterations of the charge
and potential equations. Convergence means that the
potentials (or charge) at two consecutive steps differ by
a very small amount at any spatial point, for example,
less than 1% of their value. In Figure 4d, the last step is
given by the tenth iteration.

Moreover, the model nonlinearity requires high
numerical accuracy of the related calculation. For ex-
ample, a dense refinement of energy states is needed
because charge calculation implies an energy integra-
tion.17 In Figure 4, the electronic charge is computed
by fixing the energy resolution at 0.5 meV. An adaptive
energy refinement (i.e., proportional to the slope of
charge as a function of energy) has also been imple-
mented, but it is not strictly necessary in the case
considered, owing to the lack of strong electronic reso-
nances.

GNR Protrusion. Figure 5a shows the details of the
simulated structure; the substrate that completely fills
the half space below the protruding GNR, is made of

SiO2, with relative dielectric constant ∼4; empty space
is assumed above the plane of the GNR.

In Figure 5b, we report the potential in the plane of
the GNR delimited by the metal walls after numerical
convergence of the iterative Schrödinger�Poisson sys-
tem. Charge injected in the protruding GNR affects the
potential locally, and this in turn affects charge injec-
tion. Figure 5c shows the net charge in the protruding
GNR, calculated using the one-port version of eqs 5, 7,
and 8.

It is noted, in Figure 5c, that a strong edge state is
formed at the zigzag edge termination of the armchair

GNR depicted in Figure 5a. This implies a relatively high
local density of charge and, in turn, high change of local
potential (other bound states are present, but they are
compensated by charge redistribution, similarly to what
happened in the example of Figure 2).

The above edgemode occurs also in an unperturbed
armchair GNR, but in that case, its charge contribution
is halved by Fermi probability because its resonant
energy is exactly zero (see inset of Figure 5a), consis-
tent with the limit of guided modes in a very large
zigzag GNR. When external voltages are applied or
doping comes into play, so that the symmetry of occu-
pied states is broken, this bound mode may be left out

Figure 4. Simulation details: n = 16, m = 184, Vg = 0 V, Vd = 0 V, Vs = 0 V; Fermi level of contacted GNR = 0.29 eV, T ∼ 0;
(a) simulated structure; (b) potential in the plane of the GNR; (c) net charge in the suspended GNR. (d) Potential in the
suspended GNR, at three iteration steps.
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Figure 5. Simulationdetails:n=6,m=48,Vg = 0.05V,Vd = 0V,Vs = 0.2 V, Fermi level of contactedGNR=0.6 eV, corresponding
to a carrier density of ∼2.6 � 1012 cm�2; (a) simulated structure; (b) potential in the plane of the GNR; (c) net charge in the
protruding GNR, each point of the curve represents four atomic sites.

Figure 6. Simulation details: n = 18, m = 184, Vg = 0 V, Fermi level of contacted GNR = 0.25 eV, corresponding to a carrier
density of∼9.6� 1012 cm�2. (a) Current�voltage characteristic. (b) Electron transmittivity from source to drain as a function
of carrier energy. (c) Potential through the GNRwith Vd =�0.04 and Vs = 0; the GNR on SiO2 substrate extends from0 to 20 nm
in the y-direction.
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or fully included, depending on the sign of voltage or
doping, in the charge balance (eq 8), causing a strong
deviation from the unperturbed condition. We note,
also, that the edge mode does not yield charge mod-
ulation, oscillation, or screening effects because of the
large band gap and low charge density of the contacted
GNR.

Numerical convergence is reached after three/four
iterations. The same considerations of the previous sub-
section about numerical convergence still hold here. In
addition, the following has to be remarked: the abrupt
termination of theGNRmakes the self-consistency some-
how critical and the “equilibrium” of the final solution
particularly unstable. This is likely to be true of any
abrupt discontinuity of the GNR that implies strong
local gradients of charge or potential. As a result, even
small displacements from the final solution could
prevent convergence. The applied iterative scheme
requires a starting function for the potential, or for the
charge, as close as possible to the final result.

In fact, the main issue in simulating complex non-
linear devices is givenbyhandling thenonlinear Poisson�
Schrödinger system. There is never any “a priori” guaran-
tee that the iterative approachwill actually converge to
a stable solution. This is a rather common and well-
known limit cycle problem, occurringwhen a particular
charge density (Qa) gives rise to a certain potential (Va)
and, in the next numerical cycle, a different pair (Qb)
and (Vb) is produced, so that charge and potential
simply bounce back and forth from state a to state b,
never converging. Moreover, small potential variations
can strongly affect the charge density, due to the high
number of modes involved, showing mode reso-
nances and bound states. The inclusion of some loss
mechanisms, such as phonon scattering, substrate
effects, and a more rigorous treatment of the GNR�
metal contact, is likely to lessen the strong coupling
between potential and charge, thus reducing the in-
stability domain.

Current Calculation in GNR. In the following example,
we highlight the differences between the results ob-
tainable by a self-consistent and a non-self-consistent

approach. In particular, we consider a n 3m = 18 � 184
atom armchair GNR deposited on SiO2 and calculate
the current (eq 6) driven by a source-to-drain voltage
ranging from 0 to 0.4 V.

Figure 6a shows the current�voltage characteristic:
crosses indicate currents computed non-self-consis-
tently, whereas circles are self-consistent results. Inter-
estingly, although the potential profile provided by a
non-self-consistent approach, coinciding with the first
step of the iterative calculation, may be considerably
different from the self-consistent solution, correspond-
ing to the convergence of the iterative calculation, the
respective currents do not differ so much.

We have also reported, in Figure 6b,c, respectively,
the electronic transmittivity through the GNR channel
and the electrostatic potential, both calculated at Vd =
�0.04 V and Vs = 0 V, that correspond to a point of
appreciable discrepancy between the two curves of
Figure 6a. In Figure 6b, energies are referred to the
Fermi point of the GNR. As it is shown, the presence of a
band gap Δ of about 0.45 eV allows significant trans-
mittivity only at energies higher than Δ/2. Again, in
Figure 6b, crosses represent the first iteration step,
whereas circles are for the last one. As a matter of fact,
the two transmittivity curves do not differ very much;
on the contrary, Figure 6c shows that the first-step
potential is remarkably different from that of the last-
step. This difference increases with the GNR charge
density at metal contacts: here, the arbitrary value of
9.6 � 1012 cm�2 for the charge density has been
assumed.

CONCLUSION

Multiport quantum transport in GNR has been ana-
lyzed by means of a scattering matrix approach. In this
model, the charge density in GNR circuits is derived
from a balance of carriers injected from ports and
charges confined in electronic discrete states, and
the computation is self-consistent with the self-gener-
ated and the externally applied electrostatic potentials.
The possible formation of bound states has to be
carefully considered, as it may have strong impact in

Figure 7. (a) Example of G1D: the strength of the electric field has been stressed to highlight the oscillating behavior; (b)
potential profile in one-dimensional approximation of eq 9.
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the calculations. We report examples of self-consistent
simulation of GNR devices such as GNR-FETs and GNR

protrusions that could find interesting application as
cold cathodes for X-ray generation.

COMPUTATIONAL METHODS
In this section, we propose an outline on field emission from

GNR under an accelerating external potential. In all of the
simulations, the GNR is considered as a defect-free lattice.
In general, the field emission depends on a variety of para-

meters, such as dimensionality, sharpness, work function/LDOS
of the emitting object, and external fields. In the following, we
suggest a method that could lead the way to an integration of
charge transport and charge emission in a unified model.
We start from the source-free equation of a charge wave

function ψ in a linear potential, and the corresponding one for
the Green's function G

r2 þKz � 2m

p2
(U � E)

� �
ψ ¼ 0 (9a)

r2 þKz � 2m

p2
(U � E)

� �
G ¼ δ(x � x0)δ(y � y0)δ(z � z0)

(9b)

where U is the vacuum energy, E is the charge energy, and
κ = 2m/p2eε accounts for the strength of the external electric
field ε.
Cross multiplying by G and ψ, respectively, eqs 9a and 9b,

subtracting the second equation from the first one, integrating
over the volume V0 , and exploiting reciprocity, that is,G(x0,y0 ,z0 ,x,
y,z) = G(x,y,z,x0 ,y0 ,z0), yields

�
ZZ
S0

ψ(x0 , y0, z0)δn0G(x, y, z, x0 , y0 , z0)

þ
ZZ
S0

G(x, y, z, x0 , y0 , z0)δn0ψ(x0 , y0, z0) ¼ ψ(x, y, z) ð10Þ

where the normal derivatives are referred to the prime coordi-
nates. The above equation is a familiar integral formulation of
the differential problem 9a, often preferable for numerical
reasons. As it could be readily verified, the Green's function
can be expressed as

G(x, y, z, x0 , y0, z0) ¼
Zþ¥

�¥

Zþ¥

�¥

e�jkx (x � x0 )e�jky (y � y0 )G1D(z, z
0)dkxdky

ð11Þ
where = κz � (kx

2 þ ky
2) � 2m/p2(U � E), and G1D is the one-

dimensional Green's function solution of eq 9b with ∂x = �jkx,
∂y = �jky.
If Green's function G1D is properly chosen, that is, either it

vanishes or its normal derivative vanishes or proper impedance
conditions are satisfied at the boundaries, the problem is further
simplified. In the present case, it is convenient to chose a Green
function satisfying radiation conditions, assuming the form of
outgoing traveling waves in the z-direction in terms of a proper
combination of theAiry special functions:Ai� jBi, resulting from
linear potential distribution. If the integration volume V0 is
assumed as the half space defined by the GNR plane, the con-
tribution at infinity in the surface integrals (eq 10) vanishes
because ψ and G1D have the same functional form at infinity: in
eq 10, only integrals on the GNR surface remain. In general, at
large distance from the source point, we have

G1D �K�1=3Ai(�K�2=3(z � z0)) � jK�1=3Bi(�K�2=3(z � z0))

so that integration (eq 11) can be readily performed because
each spectral component of Green's function is given by a

simple spatial shift of the one-dimensional Green's function.
Within a one-dimensional approximation, the z-dependence of
ψ in correspondence with a single atomic site, at any energy E,
is assumed as that of a mode confined in a slab of thickness
δ ∼ 0.4 nm away from vacuum level of an amount equal to
U� E, as shown in Figure 7b.U and E refer to the Fermi level. The
work function of the GNR is assumed to be similar to that of
graphite,∼4.6 eV. Using this approximation, the charge emitted
by a single atomic site in the half spaces defined by the GNR
plane can be calculated as

ψ(z > δ=2) � � (ψ0
s Dn0G1D)jz0 ¼δ=2 þ (G1DDn0ψ0

s )jz0 ¼δ=2

where thewave function and its z-derivative on the GNR surface
are marked by the “0” apex to indicate the unperturbed case,
that is, the absence of accelerating potential (κ = 0). The form of
G1D is shown explicitly in Figure 7a.
In general, of course, a more rigorous approach to the field

emission problem requires the charge transport in the GNR
plane (eq 2) to be coupled through an exchange Hamiltonian
exploiting the Green's function 11 to the charge tunneling into
the surroundings. Moreover, the electrostatic potential is typi-
cally a nonseparable function of (x,y,z), as it depends not only on
the voltage applied at the electrodes (gate, drain, source,
cathode, and anode) but also on the net charge distribution
in the GNR. Engineering the field emission effect and the field
enhancement factor from GNR, as well as evaluation of ioniza-
tion potential of the system, are the subjects of ongoing work.
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